CHAPTER IV

RESEARCH FINDINGS AND DISCUSSION

This chapter describes research findings containing the description of the data that are collected, the validity and reliability of the research instrument, the hypothesis testing, and discussion.

A. Research Findings

The researcher describes the data that are collected from each instrument that used in this research. As explained in the previous chapter, the researcher uses Pre-test and Post test. The researcher delineated the result of Pre-test and Post test data. The Pre-test was given for the student in experimental class before the treatment was begun and the Post test was given after the treatment is finished. Also the Pre-test and Post test was given for the student in the controlled class, but without treatment. This research was start on April13th, 2021 until May 11th, 2021. The research contains 5 meetings includes Pre-test for the first meeting, the second until fourth meetings for treatment, and the last meeting for Post test. The researcher used a code for each class, A for Experimental class and B for Controlled class. The research timeline is in the table below:

Table 4.1

The Research Timeline

ſ					Ар	ril				Μ	[ay		
	NO	Activity	1	3	2	0	2	7	4	11		1	
			Α	В	А	В	Α	В	Α	В	А	В	
	1	Pre-test	~	~									
	2	Treatment 1			~	-							

3	Treatment 2			✓	-				
4	Treatment 3					~	l		
5	Post test							✓	~

In the first meeting, the researcher give a Pre-test for Experimental and Controlled class. The test are carried out to know the score of the student before the treatment. The researcher gave the material for two groups in second until fourth meetings, the material is about descriptive. Every meeting, the material is same but different theme. The material in second meeting is explanation about descriptive, the task is the researcher asked the student to make a conclusion of video with the title is "All About Owl for Kids: Backyard Bird Series". Then, in the third meeting, the researcher asked students to explain about the pets they had. The task is the researcher asked the student to make a conclusion of video with the title "Top 7 Animals that kill Warthogs". In the fourth meeting, the researcher asked students to explain about themselves. The task is the researcher asked the student to make a conclusion of video with the title "Lions". The previous explanation was carried out in the experimental class. While, in the controlled class was given the same material but the media that used for assignment is audio. The researcher choose the theme of the treatment is describing animals because this treatment gave for the second semester and it gave in listening 1, describing animals is the familiar topics for the beginners. At the last meeting, the Post test are carried out for the both classes.

In order to know the result of the Pretest and Post test, The result were used to get empirical evidence about The Effect of Video as Media on the Students' Listening Skill at Second Semester of English Department Iain Madura in academic year 2020/2021. The researcher makes the table of students' score of Pre-test and Post test in the experimental class below;

				r
		PRE	POST	
NO	STUDENT	TEST	TEST	GAINED
		X1	X2	X
1	ACH. MASDUQI	90	90	0
2	ACHMAD NAUFAL AZIMI	80	100	20
3	DIEL RAMANDA PUTRA	50	80	30
4	FAHRUR ROSI	70	80	10
5	GHUFRON WAHYUDI	70	80	10
6	FATRIYAH	70	90	20
7	FAUZATUL HASANAH	70	70	0
8	FIRDATUL ANIFAH	80	90	10
9	FITRIYATUL MUNAWAROH	40	60	20
10	FITROTIN NISA	90	100	10
11	HAFIFATUS SYAFIAH	40	70	30
12	INDI DAMAYANTI	70	90	20
13	ISDA AMIN KASLILI	80	90	10
14	FIFIN SAFITRI	40	80	40
15	FITRIYATIN NAFSIYAH	40	70	30
16	HARIRIYATUL KHINANAH	60	80	20
17	HILYA NABILA	100	100	0

Table 4.2The Pre-test and Post-test Score of the Experimental Class

18	INDRI AULIA	80	80	0
19	ISTIANAH	70	70	0
20	JIHAN MAHIRA HAKIM	90	100	10
21	MIFTAHUL JANNAH	80	80	0
22	SALSABILA TAMIMI	90	90	0
23	ULFIA DWI DAYANA	90	90	0
24	ADINDA PUTRI AGUSTIN S	80	90	10
25	MERI RIZQI ANDANI	40	50	10
26	PUTRI MAGHFIROH	80	100	20
	QONITA DEWI FAKHIRA			
27	BALQIS	100	100	0
		ΣX_1	ΣX_2	ΣΧ
Amount	27 Students	= 1940	= 2270	= 330
	MEAN	71.85	84.07	12.22

As described in the table above, it showed there is a difference between the results of the Pre-test and Post test. The result for the mean of Pre-test is 71.85 with 40 as the lowest score and 100 as the highest score. While, the result for the mean of Post test is 84.07 with 50 as the lowest score and 100 as the highest score, and this test was given after they received the treatment that used audiovisual media. There are 2 students who got the highest score of Pre-test and there are 6 students who got the highest score of Post test in the Experimental class. The total score of Pretest in Experimental class is 1940 and the total score of Post test is 2270. Then, the table of students' score of Pre-test and Post test in the controlled class below;

		PRE	POST	
NO	NAME	TEST	TEST	GAINED
110		X1	X2	X
1				
1	ABDUL HAQ IRWANI	60	60	0
2	ACH. BUKHORI	60	60	0
3	ABD. GHOFUR	20	50	30
4	ACH SYAFIE	60	70	10
5	AHMAD RIFA'I	60	60	0
6	AHMAD RUDIYANI	50	60	10
-	MAULANA IMRON	00	0.0	0
7	MUBAROK	80	80	0
8	AHMAD ZAINULLAH	60	60	0
9	AMIQATIN FIKRIYAH	80	80	0
10	ANI HURIL MAWLA	80	80	0
11	ANITA SEPTIANA	90	90	0
12	ARIN DIA KINANTI	90	90	0
13	CHERYA NURFAJRIN	100	100	0
14	DARRATUL	20	80	0
	FAWAIDAH	80	80	0
15	DINA WARDINA	80	80	0
16	EKA YULIA WULANDARI	20	60	40
17	IRA FEBRIANA	80	80	0
18	ADINDA RIAN RESTY UMI FAUZIE	80	80	0
19	AISYA NABILA	80	80	0
20	ANA FITROTIN	20	60	40
21	ARINDI DIYAH IRAFANI	100	100	0
22	CINDY NURHIDAYAH	100	100	0
23	DWI PUTRI MEILINA	60	60	0

The Pre-test and Post-test Score of the Controlled Class

Table 4.3

24	EKA MAULIDYA PUTRI	30	60	30
25	FARHANA NABILA	60	60	0
26	WILDA METALIA	100	100	0
27	CHINTIA AFRILA NURANDINI	60	60	0
28	ELISATUL FITRIYAH	80	80	0
		ΣX_1	ΣX_2	ΣΧ
Amount	28 Students	= 1920	= 2080	= 160
	MEAN	68.57	74.29	5.71

As described in the table above, it showed there is a difference between the results of the Pre-test and Post test. The result for the mean of Pre-test is 68.57 with 20 as the lowest score and 100 as the highest score. While, the result for the mean of Post test is 74.29 with 50 as the lowest score and 100 as the highest score. Even though the controlled class was not taught by audiovisual media but they also showed slight improvement. There are 4 students who got the highest score of Pre-test and there are 4 students who got the highest score of Post test in the Controlled class. The total score of Pre-test in Controlled class is 1920 and the total score of Post test is 2080.

Table 4.1 and table 4.2 above showed the Pre-test score of the Experimental class and the Controlled class in which the Experimental class got the higher *MEAN* score than the Controlled class. The Experimental class got the *MEAN* score of 71.85, while the Controlled class got a lowest *MEAN* score which is 68.57. It shows that there is a difference in the Pre-test results from both classes.

While, a result of the Post test score from the Experimental and Controlled class are same with the result of the Pre-test score in which Experimental class got a higher *MEAN* score than Control class. The Experimental class got *MEAN* score of 84.07, while the Controlled class got lowest *MEAN* score is 74.29.

As it is stated from those two table above, both of the classes are showing an increase based on the result of Pre-test and Post test. The result of Pre-test in Experimental class is 1940 and the result of the Post test is 2270, It shows that there is an increase in a score of 330. While, The result of Pre-test in Controlled class is 1920 and the result of the Post test is 2080, It shows that there is an increase in a score of 160. The increase in the score obtained by Experimental class is higher than the Controlled class. The significant difference was influenced by the treatment carried out in the Experimental class. The researcher makes a char in order to make it easier to see the difference between the final score of Experimental and Controlled class.

- a. Validity and Reliability of the Research Instruments
 - 1. Validity of the Research Instruments

Checking the validity of the research instruments is used to make sure the data that was got is valid. The researcher uses the test that is multiple choice, it consist of 10 questions that must be answer by the respondent. The researcher used SPSS to help the researcher know the validity of the test. The reliability consist of Pre-test and Post test.

1) Validity of Pre-test

Table 4.4

Validity of Pre-test

Correlations												
		X1	X2	Х3	X4	X5	X6	X7	X8	X9	X10	TOTAL
X1	Pearson	1	.232	.092	.473 [*]	.207	.184	.408 [*]	.092	.259	.184	.565**
	Correlati				*			*				
	on											
	Sig. (2-		.088	.503	.000	.129	.179	.002	.502	.056	.179	.000
	tailed)											
	Ν	55	55	55	55	55	55	55	55	55	55	55
X2	Pearson	.232	1	.280 [*]	.284 [*]	.195	.351 [*]	.261	067	.324 [*]	.246	.625**
	Correlati						*					
	on											
	Sig. (2-	.088		.038	.036	.154	.009	.054	.627	.016	.071	.000
	tailed)											
	Ν	55	55	55	55	55	55	55	55	55	55	55
Х3	Pearson	.092	.280 [*]	1	.271 [*]	.136	123	144	.149	134	.005	.276 [*]
	Correlati											
	on											
	Sig. (2-	.503	.038		.046	.322	.371	.293	.277	.331	.974	.041
	tailed)											
	N	55	55	55	55	55	55	55	55	55	55	55
X4	Pearson	.473 [*]	.284 [*]	.271 [*]	1	082	.106	.282*	.101	.217	.120	.521**
	Correlati	*										
	on											
	Sig. (2-	.000	.036	.046		.553	.442	.037	.465	.112	.381	.000
	tailed)											
	N	55	55	55	55	55	55	55	55	55	55	55
X5	Pearson	.207	.195	.136	082	1	.056	.126	.233	.075	.426 [*]	.502**
	Correlati										*	
	on											
	Sig. (2-	.129	.154	.322	.553		.687	.360	.087	.584	.001	.000
	tailed)											
	N	55	55	55	55	55	55	55	55	55	55	55
X6	Pearson	.184	.351 [*]	123	.106	.056	1	.096	126	.266 [*]	.142	.417**
	Correlati		*									
	on											

Correlations

	Sig. (2-	.179	.009	.371	.442	.687		.487	.359	.050	.300	.002
	tailed)											
	N	55	55	55	55	55	55	55	55	55	55	55
Х7	Pearson Correlati on	.408 [*] *	.261	144	.282 [*]	.126	.096	1	.141	.461 [*] *	.372 [*]	.559**
	Sig. (2- tailed)	.002	.054	.293	.037	.360	.487		.304	.000	.005	.000
	N	55	55	55	55	55	55	55	55	55	55	55
X8	Pearson Correlati on	.092	067	.149	.101	.233	126	.141	1	.090	.297*	.401**
	Sig. (2- tailed)	.502	.627	.277	.465	.087	.359	.304		.515	.028	.002
	Ν	55	55	55	55	55	55	55	55	55	55	55
X9	Pearson Correlati on	.259	.324 [*]	134	.217	.075	.266*	.461 [*] *	.090	1	.315 [*]	.540**
	Sig. (2- tailed)	.056	.016	.331	.112	.584	.050	.000	.515		.019	.000
	N	55	55	55	55	55	55	55	55	55	55	55
X10	Pearson Correlati on	.184	.246	.005	.120	.426 [*] *	.142	.372 [*] *	.297 [*]	.315 [*]	1	.641**
	Sig. (2- tailed)	.179	.071	.974	.381	.001	.300	.005	.028	.019		.000
	N	55	55	55	55	55	55	55	55	55	55	55
TOT AL	Pearson Correlati on	.565 [*]	.625 [*] *	.276 [*]	.521 [*] *	.502 [*]	.417 [*] *	.559 [*] *	.401 [*] *	.540 [*] *	.641 [*] *	1
	Sig. (2- tailed)	.000	.000	.041	.000	.000	.002	.000	.002	.000	.000	
	N	55	55	55	55	55	55	55	55	55	55	55

From the table above, It is known that the 10 question

of Pre-test are all valid.

X1= 0.565 > 0.266, X2= 0.625 > 0.266, X3= 0.276 > 0.266,X4= 0.521 > 0.266, X5= 0.502 > 0.266, X6= 0.417 > 0.266, X7= 0.559 > 0.266, X8= 0.401 > 0.266, X9= 0.540 > 0.266,

X10 = 0.641 > 0.266

If $r_{value} > r_{table}$, so the question is valid.

If $r_{value} < r_{table}$, so the question is not valid.

To know r_{table} of the research is based on the degree freedom of the research.¹ The degree freedom of this research is

N = 55df = N - 2= 55 - 2= 53

5% from 53 is 0.266, so r_{table} of this research is 0.266.

2) Validity of Post test

Table 4.5

Validity of Post test

Correlations

		X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	TOTAL
X1	Pearson	1	.149	026	1.000**	120	033	.099	052	.222	019	.267 [*]
	Correlatio											
	n											
	Sig. (2-		.277	.848	.000	.384	.813	.473	.706	.103	.893	.048
	tailed)											
	Ν	55	55	55	55	55	55	55	55	55	55	55
X2	Pearson	.149	1	.018	.149	.080	.102	.510**	.309 [*]	.015	.149	.659**
	Correlatio											
	n											
	Sig. (2-	.277		.898	.277	.560	.457	.000	.022	.914	.277	.000
	tailed)											

¹ Anas Sudijono, *Pengantar Statistik Pendidikan* (Jakarta: Rajawali Pers, 2014), P.402.

	Ν	55	55	55	55	55	55	55	55	55	55	55
ХЗ	Pearson Correlatio n	026	.018	1	026	.221	047	.141	074	.099	.701 [*] *	.316
	Sig. (2- tailed)	.848	.898		.848	.105	.735	.304	.590	.471	.000	.019
	Ν	55	55	55	55	55	55	55	55	55	55	55
X4	Pearson Correlatio n	1.00 0 ^{**}	.149	026	1	120	033	.099	052	.222	019	.267
	Sig. (2- tailed)	.000	.277	.848		.384	.813	.473	.706	.103	.893	.048
	Ν	55	55	55	55	55	55	55	55	55	55	55
X5	Pearson Correlatio n	120	.080	.221	120	1	050	.485**	.324 [*]	.202	.155	.664**
	Sig. (2- tailed)	.384	.560	.105	.384		.718	.000	.016	.139	.260	.000
	Ν	55	55	55	55	55	55	55	55	55	55	55
X6	Pearson Correlatio n	033	.102	047	033	050	1	.006	092	147	033	.093
	Sig. (2- tailed)	.813	.457	.735	.813	.718		.965	.505	.284	.813	.498
	N	55	55	55	55	55	55	55	55	55	55	55
Х7	Pearson Correlatio n	.099	.510**	.141	.099	.485**	.006	1	.163	.016	.099	.742**
	Sig. (2- tailed)	.473	.000	.304	.473	.000	.965		.235	.910	.473	.000
	N	55	55	55	55	55	55	55	55	55	55	55
X8	Pearson Correlatio n	052	.309*	074	052	.324 [*]	092	.163	1	234	052	.382**
	Sig. (2- tailed)	.706	.022	.590	.706	.016	.505	.235		.086	.706	.004
	Ν	55	55	55	55	55	55	55	55	55	55	55
X9	Pearson Correlatio n	.222	.015	.099	.222	.202	147	.016	234	1	083	.348**

	Sig. (2- tailed)	.103	.914	.471	.103	.139	.284	.910	.086		.545	.009
	Ν	55	55	55	55	55	55	55	55	55	55	55
X10	Pearson Correlatio n	019	.149	.701**	019	.155	033	.099	052	083	1	.267 [*]
	Sig. (2- tailed)	.893	.277	.000	.893	.260	.813	.473	.706	.545		.048
	Ν	55	55	55	55	55	55	55	55	55	55	55
TOT AL	Pearson Correlatio n	.267*	.659**	.316 [*]	.267*	.664**	.093	.742**	.382 [*]	.348 [*] ,	.267*	1
	Sig. (2- tailed)	.048	.000	.019	.048	.000	.498	.000	.004	.009	.048	
	N	55	55	55	55	55	55	55	55	55	55	55

From the table above, It is known that the 9 question

of Post test are all valid.

X1= 0.267> 0.266, X2= 0.659> 0.266, X3= 0.316> 0.266,

X4= 0.267> 0.266, X5= 0.664> 0.266, X7= 0.742> 0.266,

X8= 0.382> 0.266, X9= 0.348> 0.266, X10= 0.267> 0.266

If $r_{value} > r_{table}$, so the question is valid.

If $r_{value} < r_{table}$, so the question is not valid.

To know r_{table} of the research is based on the degree freedom of the research.² The degree freedom of this research is

$$N = 55$$
$$df = N - 2$$
$$= 55 - 2$$

2

² Anas Sudijono, *Pengantar Statistik Pendidikan* (Jakarta: Rajawali Pers, 2014), P.402.

5% from 53 is 0.266, so r_{table} of this research is 0.266.

2. Reliability of the Research Instruments

The reliability of the instruments should check after the validity of instruments is approvable checked. As it has been known that the instrument used is multiple choice test. The researcher uses Cronbach Alpha Formula for checking the multiple choice test is reliable or not, the used of Cronbach Alpha Formula in order to make the researcher easier in counting the reliability of the test. The researcher uses SPSS to help the researcher checking the reliability of the test. To be precise, all sample of the test have been taken to be tasted. The reliability consist of Pre-test and Post test.

1) Reliability of Pre-test

Table 4.6

Case Processing Summary of Pre-test Reliability

Case Processing Summary

		Ν	%
Cases	Valid	55	100.0
	Excluded ^a	0	.0
	Total	55	100.0

= 53

Table 4.7

Reliability Statistics of Pre-test

Reliability Statistics

Cronbach's	
Alpha	N of Items
.663	10

Table 4.8

Item Total Statistics of Pre-test

Item-Total Statistics

			Corrected Item-	Squared	Cronbach's	
	Scale Mean if	Scale Variance	Total	Multiple	Alpha if Item	
	Item Deleted	if Item Deleted	Correlation	Correlation	Deleted	
X1	61.0909	402.492	.463	.365	.624	
X2	64.5455	354.882	.450	.378	.610	
ХЗ	61.2727	437.239	.134	.309	.668	
X4	63.2727	381.684	.337	.371	.636	
X5	64.9091	381.010	.297	.305	.646	
X6	65.2727	399.461	.198	.225	.668	
Х7	61.6364	391.717	.429	.398	.623	
X8	64.7273	403.165	.180	.188	.672	
X9	61.4545	397.845	.415	.321	.626	
X10	63.4545	356.364	.481	.353	.604	

From the table above, the result of reliability test for Pre-test uses Cronbach Alpha is 0.663. The researcher consults the value above with r_{table} to decide the reliability of the test is acceptable or not.

If $r_{value} > r_{table}$, so the question is reliable.

If $r_{value} < r_{table}$, so the question is not reliable.

To know r_{table} of the research is based on the degree freedom of the research.³ The degree freedom of this research is N = 55

df = N - 2= 55 - 2= 53

The score of reliability test will be compared with r_{table} of significance where is 53 and level of significance is 5%. The value of 53 in the r_{table} is 0.266. Because r_{value} is higher than r_{table} (0.663 >0.266), it means the test is reliable.

2) Reliability of Post test

Table 4.9

Case Processing Summary of Post test Reliability

Case Processing Summary							
N %							
Cases	Valid	55	100.0				
	Excluded ^a	0	.0				
	Total	55	100.0				

Table 4.10

Reliability Statistics of Post test

Reliability Statistics

	Cronbach's	
	Alpha Based on	
Cronbach's	Standardized	
Alpha	Items	N of Items
.518	.522	10

³ Anas Sudijono, *Pengantar Statistik Pendidikan* (Jakarta: Rajawali Pers, 2014), P.402.

Table 4.11

Item Total Statistics of Post test

			Corrected Item-	Squared	Cronbach's
	Scale Mean if	Scale Variance	Total	Multiple	Alpha if Item
	Item Deleted	if Item Deleted	Correlation	Correlation	Deleted
X1	69.2727	214.276	.181		.509
X2	73.6364	149.495	.395		.419
X3	69.4545	208.956	.196		.503
X4	69.2727	214.276	.181		.509
X5	73.4545	148.956	.403		.415
X6	69.6364	222.088	060		.548
X7	75.6364	139.865	.532		.352
X8	70.3636	196.162	.167		.507
X9	71.8182	196.633	.051		.559
X10	69.2727	214.276	.181		.509

Item-Total Statistics

From the table above, the result of reliability test for Post test uses Cronbach Alpha is 0.518. The researcher consults the value above with r_{table} to decide the reliability of the test is acceptable or not.

If $r_{value} > r_{table}$, so the question is reliable.

If $r_{value} < r_{table}$, so the question is not reliable.

To know r_{table} of the research is based on the degree freedom of the research.⁴ The degree freedom of this research is

```
N = 55
```

df = N - 2

⁴ Anas Sudijono, *Pengantar Statistik Pendidikan* (Jakarta: Rajawali Pers, 2014), P.402.

$$= 55 - 2$$

= 53

The score of reliability test will be compared with r_{table} of significance where is 53 and level of significance is 5%. The value of 53 in the r_{table} is 0.266. Because r_{value} is higher than r_{table} (0.0.518>0.266), it means the test is reliable.

B. Hypothesis Testing

a. T-test

After finishing the validity and reliability test and the results showed that validity and reliability of the data are acceptable because the data is valid and reliable. The researcher conducted a test of hypothesis to check whether there was a significant difference in the result of Pre-test and Post-test after treatments was carried out. Group 1 as Experimental Class and Group 2 as Controlled Class.

Table 4.12

T-test of Pre-test and Post test

Group Statistics (Pre-test)								
	Group	Ν	Mean	Std. Deviation	Std. Error Mean			
Score	1	27	71.85	19.022	3.661			
	2	28	68.57	23.993	4.534			

Group Statistics (Post test)								
	Group	Ν	Mean	Std. Deviation	Std. Error Mean			
Score	1	27	84.07	13.085	2.518			
	2	28	74.29	15.258	2.883			

Group Statistics (Post test)

Table 4.13

The Result of Independent Sample Test

	Levene's Test for			•							
	Equality of										
			inces		t-test for Equality of Means						
									95	5%	
									Confi	dence	
						Sig.	Mean		Interva	l of the	
						(2-	Differen	Std. Error	Diffe	rence	
		F	Sig.	Т	df	tailed)	се	Difference	Lower	Upper	
Score	Equal	1.87	.177	2.55	53	.014	9.788	3.839	2.088	17.489	
	varian	4		0							
	ces										
	assum										
	ed										
	Equal			2.55	52.2	.014	9.788	3.828	2.107	17.469	
	varian			7	99						
	ces										
	not										
	assum										
	ed										

Independent Samples Test

Based on the table of independent test above, the result of p-value or sig (2-tailed) = 0.014. Based on the result, that the null hypothesis was rejected whether the alternative hypothesis was accepted because the p-value has a lower score than sig = α = 0.05 (5%). Furthermore the data of independent test above describe that there was a significant statistically between the Experimental and Controlled class based on the result of Post test. Otherwise stated, there was a significant effect of using audiovisual media on students' listening skill.

b. The size effect test

To measure whether the effect size of media was strong, the researcher in this research adopted Cohen's formulation. The formula as follows:

$$d = \frac{(mean of group 1 - mean of group 2)}{pooled standard deviation}$$

Pooled Standard Deviation:

 $\frac{(standard\ deviation\ group\ 1+standard\ deviation\ of\ group\ 2)}{2}$

In which:

Mean of group 1 (Experimental class) = 84.07

Mean of group 2 (Controlled class) = 74.29

Standard deviation of group 1(Experimental class) = 13.085

Standard deviation of group 2(Controlled class) = 15.258

Pooled Standard Deviation=
$$\frac{(13.085+15.258)}{2}$$

$$=\frac{28.338}{2}$$

= 14.169

$$d = \frac{(84.07 - 74.29)}{14.169}$$
$$= \frac{9.78}{14.169}$$
$$= 0.690$$

According to the table 3.1, it can be measure the calculation result that the effect size level in this study is in Moderate Effect, then the effect of the used of audiovisual media on students' listening skill has a quite significant.

C. Discussion

The purpose in this research is to know any difference at second semester students listening skill that use video and those are who do not use video as media in English Department IAIN Madura. The several information of this research was obtained by the researcher using SPSS program to analyze the data that has been collected of the study. Based on the table 4.1 the total score of Pre-test in Experimental class is 1940 and for Post test is 2270. The result of the Pre-test and Post test is different. The result for the mean of Pre-test is 71.85 with 40 as the lowest score and 100 as the highest score. While, the result for the mean of Post test is 84.07 with 50 as the lowest score and 100 as the highest score, and this test was given after they received the treatment that used audiovisual media. There are 2 students who got the highest score of Pre-test and there are 6 students who got the highest score of Post test in the Experimental class. Meanwhile, in table 4.2 it showed there is a difference between the results of the Pre-test and Post test. The result for the mean of Pre-test is 68.57 with 20 as the lowest score and 100 as the highest score. While, the result for the mean of Post test is 74.29 with 50 as the lowest score and 100 as the highest score. Even though the controlled class was not taught by audiovisual media but they also showed slight improvement.

There are 4 students who got the highest score of Pre-test and there are 4 students who got the highest score of Post test in the Controlled class. The total score of Pre-test in Controlled class is 1920 and the total score of Post test is 2080. The Experimental class got 71.85 in Pre-test while the Controlled class got 68.57. It shown that both of classes Experimental and Controlled class had almost similar ability in listening skill. While, Experimental class got 84.07 and Controlled class got 74.29 in a Post test. The results proved that any difference at second semester students listening skill that use audiovisual and those are who do not use audiovisual media. Based on the table 4.3, the table showed that the question that used for Pre-test is valid. X1 = 0.565 > 0.266, X2 = 0.625 >0.266, X3 = 0.276 > 0.266, X4 = 0.521 > 0.266, X5 = 0.502 > 0.266, X6 = 0.502 > 0.260.417 > 0.266, X7= 0.559 > 0.266, X8= 0.401 > 0.266, X9= 0.540 > 0.266, X10= 0.641 > 0.266. In the table showed r_{value} of all the questions is higher than r_{table} . The r_{table} in this research is 0.266 with the level significance is 15% from the degree freedom of this research that is 53. While, in the table 4.4 showed that the 9 questions of Post test are valid. X1= 0.267 > 0.266, X2= 0.659 > 0.266, X3= 0.316 > 0.266, X4= 0.267 > 0.266, X5 = 0.664 > 0.266, X7 = 0.742 > 0.266, X8 = 0.382 > 0.266, X9 =0.348 > 0.266, X10= 0.267 > 0.266. In the table showed r_{value} of 9 questions are higher than r_{table} , while in question number 6 is not valid because r_{value} is lower than r_{table} . The r_{table} in this research is 0.266 with the level significant is 15% from the degree freedom of this research that is 53. In table 4.6, the result of the reliability test for Pre-test used Cronbach Alpha is 0.663. After the researcher compared the score of reliability test with r_{table} of significance where is 53 and level of significance is 5%. The value of 53 in the r_{table} is 0.266. Because r_{value} is higher than r_{table} (0.663 > 0.266), it means the Pre-test is reliable. While, in the table 4.9, the result of the reliability test for Post test used Cronbach Alpha is 0.518. After the researcher compared the score of reliability test with r_{table} of significance where is 53 and level of significance is 5%. The value of 53 in the r_{table} is 0.266. Because r_{value} is higher than r_{table} (0.518> 0.266), it means the Post test is reliable. Moreover, based on the result of independent sample test in table 4.12.It resulted of p-value or sig (2-tailed) = 0.014. Based on the result, that the null hypothesis was rejected whether the alternative hypothesis was accepted because the pvalue has a lower score than sig = $\alpha = 0.05$ (5%). Furthermore the data of independent test above describe that there was a significant statistically between the Experimental and Controlled class base on the result of Post test.

Otherwise stated, there was a significant effect of using video as media on students' listening skill. Additional, the effect size of video as media was 0.690. Therefore, the effect size level of this research was moderate. In the final analysis, it is already proved that there was a moderate effect of using audiovisual media on students' listening skill. In short, this research answers the question of "*Is there any difference at second semester students listening skill that use video and those are who do not use video as media in English Department IAIN Madura in* academic year 2020/2021?" and "How significant is the effect of video as media on the students' listening skill at Second Semester of English Department Iain Madura in academic year 2020/2021?". This question is developed from the title of this research "The Effect of Video as Media on the Students' Listening Skill at Second Semester of English Department Iain Madura in academic year 2020/2021".