CHAPTER IV

RESEARCH FINDING AND DISCUSSION

This chapter presents and discusses the statistical result based on the instruments that are used in conducting the research. The data is presented which are presentation of data, hypothesis testing and measurement of validity and reliability of the test

A. Presentation of Data

As stated in the chapter 1 that there are two research problems of this study. The problems are whether there is the effect of asynchronous method for students' comprehension in English Syntax at the fifth semester of English Department IAIN Madura or not and whether there is the significance of effect of asynchronous method for students' comprehension in English Syntax at the fifth semester of English Department IAIN Madura or not.

In this part, the researcher has to present the data to know both of variables as include in the research problem above about independent and dependent variable after computing all of the data during the researcher process as a form of the result. The researcher used questionnaire, test and documentation as the instruments in collecting the data. Data will be presented is the data which researcher got during the research process. That is the result of test and documentation data as method to collect the data related to variable X (asynchronous method) and variable Y (students' comprehend in English syntax)

The researcher takes some samples as the population sampling whether this the students understand or not in this subject. So, the researcher conducts giving test and questionnaire in D class in the fifth semester at English department of IAIN Madura.

- 1. Data Presentation of the Test
 - a. Presentation of Questionnaire

In this part, the researcher gives the questionnaire to make sure the use of asynchronous method in English syntax. Questionnaire is given to the student. The questionnaire consists of twenty questions.

The questionnaire is used to collect data for independent variable (X) exactly asynchronous method in learning. To measure behavioral data, the researcher uses scale likert. Skala likert assesses attitudes toward a topic by presenting a set of statements about the topic and asking respondents to indicate for each whether the options are concerning with frequency or not, such as always, often, sometimes, seldom, and never. To score the scale, the response categories must be weighted. Always is scored 5, often is scored 4, sometimes is scored 3, seldom is scored 2 and never is scored 1. If the students can answer all of the questions correctly the score are 100 scores. After the student submitted the questionnaire to researcher, the researcher gives the score as criteria of scoring the questionnaire. The students' questionnaire score is displayed in the table 1 below

no	The correspondents	Score
1	AF	70
2	ASR	70
3	FY	80
4	KA	70
5	An	70
6	AF	80
7	СЕ	80
8	FCN	80
9	HDI	60
10	KS	70
11	KA	62
12	LHB	70
13	LA	80
14	ML	60
15	MSF	74
16	Mu	78
17	NW	70
18	NH	68
19	NL	64
20	RKL	68
21	RM	70

Table I. The score of questionnaire

22	RH	72
23	RDH	62
24	SR	74
SUM		1702

b. Presentation of Test

In this part, as the researcher stated in the chapter III, the test is used to measure students' comprehension in English syntax by D. Krashen and D. Terrell from the score of the test. The form of the test is answering questions which consist of 10 questions. Every correct answer gets 10 points, get 0 point for incorrect point and get 5 point for almost correct which have been provided by the researcher. If the students can answer all of the questions correctly the score are 100 scores. After the student submitted the test to researcher, the researcher gives the score as criteria of scoring which are taken from teacher made test. The students' test score is displayed in the table 1 below

Table II. The scores of test

No	The correspondents	test score
1.	AF	75
2.	ASR	55
3.	FY	70
4.	КА	60
5.	An	70

6.	AF	85
7.	СЕ	65
8.	FCN	75
9.	HDI	50
10.	KS	85
11.	KA	60
12.	LHB	75
13.	LA	85
14.	ML	70
15.	MSF	50
16.	Mu	85
17.	NW	80
18	NH	55
19.	NL	50
20.	RKL	55
21.	RM	55
22.	RH	55
23.	RDH	85
24.	SR	70
	SUM	1620

Based on the table above, it is known that the students are twenty four. The first column is a number of the students, the second column is the name of student and the third column is table of test score. It is found that the total test score of students' comprehension in English syntax is 1620 scores using asynchronous method.

From the table above, there many various scores. Students who get the score above 60 are 16 students, it is called as a good comprehension and students who get score under 59 are 8 students and it is called by a weak comprehension.

2. Data Presentation of Documentation

The data were gotten from documentation, as follow:

- a. The fifth semester of D class consists of thirty Students name list of E-learning application.
- b. Students score
- c. Lesson plan
- d. The Screenshot photos for getting the test.
- e. The Screenshot photos for giving questionnaire.
- f. The screenshot of teaching learning activities of asynchronous method.

After researcher counted the score of questionnaire and test, the researcher analyzes the data.

3. Data analysis

The research has to analyze the scores to get statistical form in questionnaire and test of this research. Then, before testing the hypothesis, the researcher would like to analyze the data to get the result of this research. The research used independent t-test to analyze the data which included two result of test instrument. The calculation of independent t-test is formed by considering the table as follow:

No.	Name	sco	ore	Х	Y	X^2	Y^2
		Х	Y				
1.	AF	70	75	-0.9	+7.5	0.81	56.25
2.	ASR	70	55	-0.9	-12.5	0.81	156.25
3.	FY	80	70	+9.1	+2.5	82.1	6.25
4.	KA	70	60	-0.9	-7.5	0.81	56.25
5.	An	70	70	-0.9	+2.5	0.81	6.25
6.	AF	80	85	+9.1	+17.5	82.1	306.25
7.	CE	80	65	+9.1	-2.5	82.1	6.25
8.	FCN	80	75	+9.1	+7.5	82.1	56.25
9.	HDI	60	50	-10.9	-17.5	118.81	306.25
10	KS	70	85	-0.9	+17.5	0.81	306.25
11.	KA	62	60	-8.9	-7.5	79.21	56.25
12.	LHB	70	75	-0.9	+7.5	0.81	56.25
13.	LA	80	85	+9.1	+17.5	82.1	306.25
14.	ML	60	70	-10.9	+2.5	118.81	6.25
15.	MSF	74	50	+3.1	-17.5	9.61	306.25
16.	Mu	78	85	+7.1	+17.5	50.41	306.25
17.	NW	70	80	-0.9	+12.5	0.81	156.25
18.	NH	68	55	-2.9	-12.5	8.41	156.25
19.	NL	64	50	-6.9	-17.5	47.61	306.25

Table III. The calculation of paired sample t-test

20.	RKL	68	55	-2.9	-12.5	8.41	156.25
21.	RM	70	55	-0.9	-12.5	0.81	156.25
22.	RH	72	55	+1.1	-12.5	1.21	156.25
23	RDH	62	85	-8.9	+17.5	79.21	306.25
24	SR	74	70	+3.1	+2.5	9.61	6.25
		$\sum X =$	$\sum Y =$	$\sum X =$	$\sum Y =$	$\sum X^2 =$	$\sum Y^2 =$
		1702	1620	0.4	12.5	948.29	3700

Based on the table above, the computation of dependent t-test is administrated as follow:

N = 24 $\Sigma X = {}_{1702}$ $\Sigma Y = {}_{1620}$ $\Sigma X = {}_{0.4}$ $\Sigma Y = 12.5$ $\Sigma X^2 = 948.29$ $\Sigma Y^2 = 3700$

The counting steps t-test are, as follow:

a. Looking for mean of difference, by formula :

$$M_1 = \frac{\sum X}{N} = \frac{1702}{24} = 70.9$$
$$M_2 = \frac{\sum Y}{N} = \frac{1620}{24} = 67.5$$

b. Determining standard deviation of sample researched formula:

$$SD_1 = \sqrt{\frac{\Sigma x^2}{N}} = \sqrt{\frac{948.29}{24}} = \sqrt{39.5} = 6.3$$
$$SD_2 = \sqrt{\frac{\Sigma y^2}{N}} = \sqrt{\frac{3700}{24}} = \sqrt{154.17} = 12.4$$

c. Determining standard error of the sample mean by formula:

$$SE_{M1} = \frac{SD_1}{\sqrt{N_1 - 1}} = \frac{6.3}{\sqrt{24 - 1}} = \frac{6.3}{\sqrt{23}} = \frac{6.3}{4.8} = 1.3$$
$$SE_{M2} = \frac{SD_2}{\sqrt{N_2 - 1}} = \frac{12.4}{\sqrt{24 - 1}} = \frac{12.4}{\sqrt{23}} = \frac{12.4}{4.8} = 2.6$$

d. Determining the total of standard of the error of the sample mean

SE_{M1-M2} =
$$\sqrt{SE_{M1}^2 + SE_{M2}^2} = \sqrt{1.3 + 2.6} = \sqrt{3.9} = 1.97$$

e. Determining t_o by the formula :

$$t_o = \frac{M_1 - M_2}{SE_{M1} - M_2} = \frac{70.9 - 67.5}{1.97} = \frac{3.4}{1.97} = 1.72$$

Based on the calculation of dependent t-test, the researcher finds $t_o = 1.72$. So, to know whether null hypothesis is rejected or not, the researcher must do the process of hypothesis testing.

B. Hypothesis Testing

Based on the result of t_o , that is 1.72. It must be consulted with t-table by using significant level 5% to know whether H_o is rejected or not. It is called by hypothesis testing. Hypothesis testing is a test that important in quantitative research. In the chapter III, the researcher wrote if t_o is same or higher value that t-table, it means that Ho is rejected and Ha is accepted. In contrast, if t_o is less than t-table, Ho is accepted and Ha is rejected. The researcher use alpha significance level 5% as it is usually used in educational research. Then to prove alternative hypothesis or null hypothesis are accepted or rejected, the researcher consults t_o of this research to t-table.

To consult t_o of this research to t-table, the researcher should determine df (Degree of freedom) by formula df = N-1. As the discussed above the number of participants (N=24). So the degree of freedom is calculated as follow:

df = N-2

df = 24-2 = 22

Based on df score above, in order to consult to t-value on the level of significance 5%. Obviously, in df = 22, t-value that can be obtained in t-table in the level significance 5% is 0.404.

After $t_o = 1.72$ then compare with t-value in t-table of 0.404, the researcher stated that null hypothesis is rejected and alternative hypothesis (Ha) is accepted because $t_o >$ t-table (1.72 >0.404).

Finally, alternative hypothesis is accepted, the researcher concludes that there is effect of asynchronous method the fifth semester students' comprehension in English Syntax at English Department of IAIN Madura.

C. Validity and Reliability of the Instrument

- 1. Validity of the Instrument
 - a. Validity of the Test

In this section, the validity is the most important in developing, measuring, and evaluating instrument in using a test. To check the validity of the test, the researcher identifies the test the researcher used. The researcher identifies whether the test is appropriate to the students or not. The test is used in this research based on the material in handbook of English syntax given in the previous semester. Therefore, the researcher can make the test that appropriates with the student gets in this semester.

The next step were looking for the proof of validity. The researcher used content validity to measure the comprehension of the student in English syntax. Before conducting the test, the researcher explains clearly to students about the instruction of test. As stated by Donald Ary that the content validity like to look at the material covered the wording of the question and the adequacy of the sample of items to measure the achievement in question.¹ The researcher makes a test appropriate for the material given in the previous semester. So, the test the researcher given to the students is valid.

¹ Donald Ary, Lucy Cheser Jacobs, and Chris Sorensen, *Introduction to Research in Education*, eighth (Wadsworth Cengage Learning, 2010), 226.

b. Validity of Questionnaire

To check the validity of the questionnaire, the researcher identifies the questionnaire which the researcher used. The researcher uses SPSS V 20 to know the validity. The researcher would like to present the result of calculating using SPPS

										Corr	elatic	ons										
		X1	X2	Х3	X4	X5	X6	Х7	X8	X9	X1	X1	X12	X1	X1	X1	X1	X1	X1	X1	X2	SUM
	!	 '	↓ '	 '	\square	⊢'		ļ			0	1		3	4	5	6	7	8	9	0	Х
	Pear																					
	son		-	06	_	-!	15	04		10	07	1.0		06	-	-	15	04	-	10	07	
	Corr	1	.18	.00	.17	.34	c۱. ہ	.04	219	.10	.07	00*	187	.00	.17	.34	دا. ہ	.04	.21	.10	.07	.103
	elati		7	Э	0	8	0	U		U	0	*		Э	0	8	0	U	9	U	0	
	on		'					Į														
X1	Sig.																					
	(2-		.38	.74	.42	.09	.46	.85	204	.39	.71	.00	204	.74	.42	.09	.46	.85	.30	.39	.71	204
	taile		1	7	7	5	0	4	.304	9	8	0	.381	7	7	5	0	4	4	9	8	.631
	d)		'																			
	N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
	Pear																					
	son			-		_	-	-		_	-	-		-			-	-	-	-	-	
	Corr	187	1	.32	.00	.23	.04	.44	065	.17	.19	.18	1.00	.32	.00	.23	.04	.44	.06	.17	.19	072
	elati			0	2	7	1	5 [*]		4	4	7	0	0	2	7	1	5*	5	4	4	l
	on																					
X2	Sig.																					
	(2-			.12	.99	.26	.85	.02		.41	.36	.38		.12	.99	.26	.85	.02	.76	.41	.36	
	taile	.381		7	1	4	1	9	.764	5	3	1	.000	7	1	4	1	9	4	5	3	.738
	d)																					
	Ν	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
	Pear																					
	son	7.00	-			-	10	~7		25	20	20		1.0		-	10			25		
	Corr	Z.06	.32	1	.21	.10	.10	.27	.085	.25	.20	.06	320	00	.21	.10	.10	.27	.08	.25	.20	.473 [*]
	elati	9	0		1	4	4	6		8	8	9		*	1	4	4	6	5	8	8	
Х3	on																					
	Sig.																					
	(2-	747	.12		.32	.63	.62	.19	004	.22	.32	.74	107	.00	.32	.63	.62	.19	.69	.22	.32	200
	taile	./4/	7		2	0	9	1	.694	3	8	7	.127	0	2	0	9	1	4	3	8	.020
	d)					1 1																1

	N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
	Pear son Corr elati	170	.00 2	.21 1	1	- .19 5	.09 3	- .34 1	.217	- .53 4 ^{**}	- .49 4 [*]	- .17 0	.002	.21 1	1.0 00 [*]	- .19 5	.09 3	- .34 1	.21 7	- .53 4 ^{**}	- .49 4 [*]	130
X4	on Sig. (2- taile	.427	.99 1	.32 2		.36 2	.66 7	.10 3	.309	.00 7	.01	.42 7	.991	.32 2	.00. 0	.36 2	.66 7	.10 3	.30 9	.00 7	.01	.543
	d) N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
	son Corr elati	348	.23 7	- .10 4	- .19 5	1	.38 8	- .15 4	163	.05 2	- .13 4	- .34 8	.237	- .10 4	- .19 5	1.0 00 [*]	.38 8	- .15 4	- .16 3	.05 2	- .13 4	.170
X5	on Sig. (2- taile	.095	.26 4	.63 0	.36 2		.06 1	.47 2	.446	.81 1	.53 2	.09 5	.264	.63 0	.36 2	.00. 0	.06 1	.47 2	.44 6	.81 1	.53 2	.428
	a) N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
	Pear son Corr elati	.158	- .04 1	.10 4	.09 3	.38 8	1	.12 3	.164	.01 0	.23 6	.15 8	041	.10 4	.09 3	.38 8	1.0 00 [*]	.12 3	.16 4	.01 0	.23 6	.662 [*] *
X6	on Sig. (2- taile d)	.460	.85 1	.62 9	.66 7	.06 1		.56 8	.444	.96 5	.26 7	.46 0	.851	.62 9	.66 7	.06 1	.00. 0	.56 8	.44 4	.96 5	.26 7	.000
	N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
	son Corr elati	.040	- .44 5 [*]	.27 6	- .34 1	- .15 4	.12 3	1	.242	.51 4 [*]	.62 7 ^{**}	.04 0	- .445 [*]	.27 6	- .34 1	- .15 4	.12 3	1.0 00 [*]	.24 2	.51 4 [*]	.62 7 ^{**}	.650 [*] *
Х7	on Sig. (2- taile d)	.854	.02 9	.19 1	.10 3	.47 2	.56 8		.255	.01 0	.00 1	.85 4	.029	.19 1	.10 3	.47 2	.56 8	.00. 0	.25 5	.01 0	.00 1	.001
	N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24

X8	Pear son Corr elati on	219	.06 5	.08 5	.21 7	.16 3	.16 4	.24 2	1	.42 1 [*]	.05 5	- .21 9	065	.08 5	.21 7	.16 3	.16 4	.24 2	1.0 00 [*]	- .42 1 [*]	.05 5	.225
	Sig. (2- taile d)	.304	.76 4	.69 4	.30 9	.44 6	.44 4	.25 5		.04 1	.80 0	.30 4	.764	.69 4	.30 9	.44 6	.44 4	.25 5	.00. 0	.04 1	.80 0	.291
	Ν	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
No	Pear son Corr elati on	.180	- .17 4	.25 8	- .53 4 ^{**}	.05 2	.01 0	.51 4 [*]	- .421 [*]	1	.64 8 ^{**}	.18 0	174	.25 8	- .53 4 ^{**}	.05 2	.01 0	.51 4 [*]	- .42 1 [*]	1.0 00 [*]	.64 8 ^{**}	.507*
X9	Sig. (2- taile d)	.399	.41 5	.22 3	.00 7	.81 1	.96 5	.01 0	.041		.00 1	.39 9	.415	.22 3	.00 7	.81 1	.96 5	.01 0	.04 1	.00 0	.00 1	.011
	Ν	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
X1	Pear son Corr elati on	.078	- .19 4	.20 8	.49 4 [*]	.13 4	.23 6	.62 7 ^{**}	055	.64 8 ^{**}	1	.07 8	194	.20 8	.49 4 [*]	.13 4	.23 6	.62 7 ^{**}	.05 5	.64 8 ^{**}	1.0 00 [*] *	.671 [*] *
0	Sig. (2- taile d)	.718	.36 3	.32 8	.01 4	.53 2	.26 7	.00 1	.800	.00 1		.71 8	.363	.32 8	.01 4	.53 2	.26 7	.00 1	.80 0	.00 1	.00. 0	.000
	N N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
X1	Pear son Corr elati on	1.00 0 ^{**}	- .18 7	.06 9	- .17 0	- .34 8	.15 8	.04 0	219	.18 0	.07 8	1	187	.06 9	- .17 0	- .34 8	.15 8	.04 0	- .21 9	.18 0	.07 8	.103
1	Sig. (2- taile d)	.000	.38 1	.74 7	.42 7	.09 5	.46 0	.85 4	.304	.39 9	.71 8		.381	.74 7	.42 7	.09 5	.46 0	.85 4	.30 4	.39 9	.71 8	.631
	Ν	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24

X1	Pear son Corr elati on	187	1.0 00 [*] *	- .32 0	.00 2	.23 7	- .04 1	- .44 5 [*]	065	- .17 4	- .19 4	- .18 7	1	- .32 0	.00 2	.23 7	.04 1	- .44 5 [*]	.06 5	- .17 4	- .19 4	072
2	Sig. (2- taile d)	.381	.00 0	.12 7	.99 1	.26 4	.85 1	.02 9	.764	.41 5	.36 3	.38 1		.12 7	.99 1	.26 4	.85 1	.02 9	.76 4	.41 5	.36 3	.738
	Ν	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
X1	Pear son Corr elati on	.069	- .32 0	1.0 00 [*] *	.21 1	.10 4	.10 4	.27 6	.085	.25 8	.20 8	.06 9	320	1	.21 1	- .10 4	.10 4	.27 6	.08 5	.25 8	.20 8	.473*
3	Sig. (2- taile d)	.747	.12 7	.00 0	.32 2	.63 0	.62 9	.19 1	.694	.22 3	.32 8	.74 7	.127		.32 2	.63 0	.62 9	.19 1	.69 4	.22 3	.32 8	.020
	N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
X1	Pear son Corr elati on	170	.00 2	.21 1	1.0 00 [*] ,	- .19 5	.09 3	.34 1	.217	- .53 4 ^{**}	.49 4 [*]	.17 0	.002	.21 1	1	- .19 5	.09 3	- .34 1	.21 7	- .53 4**	.49 4 [*]	130
4	Sig. (2- taile	.427	.99 1	.32 2	.00 0	.36 2	.66 7	.10 3	.309	.00 7	.01 4	.42 7	.991	.32 2		.36 2	.66 7	.10 3	.30 9	.00 7	.01 4	.543
	n	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
X1	Pear son Corr elati on	348	.23 7	- .10 4	- .19 5	1.0 00 [*] *	.38 8	.15 4	163	.05 2	- .13 4	.34 8	.237	- .10 4	- .19 5	1	.38 8	- .15 4	- .16 3	.05 2	- .13 4	.170
5	Sig. (2- taile	.095	.26 4	.63 0	.36 2	.00. 0	.06 1	.47 2	.446	.81 1	.53 2	.09 5	.264	.63 0	.36 2		.06 1	.47 2	.44 6	.81 1	.53 2	.428
	N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24

X1	Pear son Corr elati on	.158	- .04 1	.10 4	.09 3	.38 8	1.0 00 [*]	.12 3	.164	.01 0	.23 6	.15 8	041	.10 4	.09 3	.38 8	1	.12 3	.16 4	.01 0	.23 6	.662 [*]
6	Sig. (2- taile d)	.460	.85 1	.62 9	.66 7	.06 1	.00. 0	.56 8	.444	.96 5	.26 7	.46 0	.851	.62 9	.66 7	.06 1		.56 8	.44 4	.96 5	.26 7	.000
	Ν	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
X1	Pear son Corr elati on	.040	- .44 5 [*]	.27 6	- .34 1	- .15 4	.12 3	1.0 00 [*]	.242	.51 4 [*]	.62 7 ^{**}	.04 0	- .445 [*]	.27 6	- .34 1	- .15 4	.12 3	1	.24 2	.51 4 [*]	.62 7 ^{**}	.650 [*] *
7	Sig. (2- taile d)	.854	.02 9	.19 1	.10 3	.47 2	.56 8	.00. 0	.255	.01 0	.00 1	.85 4	.029	.19 1	.10 3	.47 2	.56 8		.25 5	.01 0	.00 1	.001
	N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
X1 8	Pear son Corr elati on Sig.	219	.06 5	.08 5	.21 7	.16 3	.16 4	.24 2	1.00 0 ^{**}	.42 1 [*]	.05 5	.21 9	065	.08 5	.21 7	.16 3	.16 4	.24 2	1	.42 1 [*]	.05 5	.225
	(2- taile	.304	.76 4	.69 4	.30 9	.44 6	.44 4	.25 5	.000	.04 1	.80 0	.30 4	.764	.69 4	.30 9	.44 6	.44 4	.25 5		.04 1	.80 0	.291
	a) N Pear	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
X1	son Corr elati on	.180	- .17 4	.25 8	- .53 4 ^{**}	.05 2	.01 0	.51 4 [*]	- .421 [*]	1.0 00 [*]	.64 8 ^{**}	.18 0	174	.25 8	- .53 4 ^{**}	.05 2	.01 0	.51 4 [*]	- .42 1 [*]	1	.64 8 ^{**}	.507*
9	Sig. (2- taile d)	.399	.41 5	.22 3	.00 7	.81 1	.96 5	.01 0	.041	.00 0	.00 1	.39 9	.415	.22 3	.00 7	.81 1	.96 5	.01 0	.04 1		.00 1	.011
	N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24

X2	Pear son Corr elati on	.078	.19 4	.20 8	.49 4 [*]	- .13 4	.23 6	.62 7 ^{**}	055	.64 8 ^{**}	1.0 00 [*]	.07 8	194	.20 8	.49 4 [*]	- .13 4	.23 6	.62 7 ^{**}	.05 5	.64 8 ^{**}	1	.671 [*]
0	Sig. (2- taile d)	.718	.36 3	.32 8	.01 4	.53 2	.26 7	.00 1	.800	.00 1	.00 0	.71 8	.363	.32 8	.01 4	.53 2	.26 7	.00 1	.80 0	.00 1		.000
	Ν	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
SU	Pear son Corr elati on	.103	- .07 2	.47 3 [*]	- .13 0	.17 0	.66 2 ^{**}	.65 0 ^{**}	.225	.50 7 [*]	.67 1 ^{**}	.10 3	072	.47 3 [*]	- .13 0	.17 0	.66 2 ^{**}	.65 0 ^{**}	.22 5	.50 7 [*]	.67 1**	1
МХ	Sig. (2- taile d) N	.631 24	.73 8 24	.02 0 24	.54 3 24	.42 8 24	.00 0 24	.00 1 24	.291 24	.01 1 24	.00 0 24	.63 1 24	.738 24	.02 0 24	.54 3 24	.42 8 24	.00 0 24	.00 1 24	.29 1 24	.01 1 24	.00 0 24	24

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Based on df table above, in order to consult to t-value on the level of significance 5%. Obviously, in df = 22, t-value that can be obtained in t-table in the level significance 5% is 0.404. If t-value is lower than t-table, so the question is not valid, but if t-value is higher than t-table so the question is valid.

Therefore, there are ten question is not valid because t-value is lower than t-table. Then ten question is valid because t-value is higher than t-table.

- 2. The reliability of Instrument
 - a. The reliability of Test

After, the validity of the test is provable, the researcher determining the reliability. The reliability uses Chronbach Alpha formula because it is suitable to measure the reliability of the performance of students in testing such as measure the understanding of students.

In this case, the researcher presents the reliability testing.

Reliability Statistics			
Cronbach's	N of Items		
Alpha			
.649	11		

item-rotal Statistics				
	Scale Mean if	Scale Variance	Corrected Item-	Cronbach's Alpha if
	Item Deleted	if Item Deleted	Total Correlation	Item Deleted
X1	125.63	644.158	041	.661
X2	127.29	562.998	.515	.608
Х3	131.67	601.449	.204	.643
X4	127.08	667.210	194	.697
X5	128.75	467.935	.801	.533
X6	129.17	488.406	.620	.564
X7	125.21	633.650	.171	.650
X8	125.42	625.906	.131	.650
X9	130.83	601.449	.204	.643
X10	131.46	601.042	.259	.637
SUM	67.50	160.870	1.000	.400

Item-Total Statistics

To know the reliability of the test, whether it is reliable or not, the researcher compare the value of r_o and r_{table} . To know r_o , the researcher look for the degrees of freedom by formula: df = N - nr = 24 - 2 = 22

df : degrees of freedom

N: Number of cases

nr : total variable which is correlated. nr = 2.

From the analysis above, it is known that the reliability from the instrument is 0,649. The score will be compared with r_{table} of significance where N is 22 and level of significance is 5%. The value on the r_{table} is 0,404. Because r value is higher than r table (0,649> 0,404), so the test is reliable.

b. Reliability of Questionnaire

The reliability of questionnaire uses Chronbach Alpha formula because it is suitable to measure the reliability of the performance of students in testing such as measure the understanding of students.

In this case, the researcher presents the reliability testing.

Reliability Statistics			
Cronbach's	N of Items		
Alpha			
.684		21	

Item-Total Statistics				
	Scale Mean	Scale Variance	Corrected Item-	Cronbach's
	if Item	if Item Deleted	Total Correlation	Alpha if Item
	Deleted			Deleted
X1	137.12	164.375	.061	.685
X2	138.29	168.129	143	.697
Х3	137.46	157.389	.428	.670
X4	138.37	169.027	193	.698

Item-Total Statistics

X5	138.58	162.862	.113	.683
X6	138.37	147.984	.609	.651
X7	138.46	146.259	.589	.649
X8	138.83	161.884	.170	.681
X9	139.12	155.071	.455	.666
X10	138.25	147.761	.619	.650
X11	137.12	164.375	.061	.685
X12	138.29	168.129	143	.697
X13	137.46	157.389	.428	.670
X14	138.37	169.027	193	.698
X15	138.58	162.862	.113	.683
X16	138.37	147.984	.609	.651
X17	138.46	146.259	.589	.649
X18	138.83	161.884	.170	.681
X19	139.12	155.071	.455	.666
X20	138.25	147.761	.619	.650
SUM	70.00	41 204	1 000	620
Х	70.92	41.384	1.000	.638

To know the reliability of the question, whether it is reliable or not, the researcher compare the value of r_o and r_{table} . To know r_o , the researcher look for the degrees of freedom by formula:

df = N - nr = 24 - 2 = 22

- df : degrees of freedom
- N: Number of cases

nr : total variable which is correlated. nr = 2.

From the analysis above, it is known that the reliability from the instrument is 0,684. The score will be compared with r_{table} of significance where N is 22 and level of significance is 5%. The value on the r_{table} is 0,404. Because r value is higher than r table (0,684> 0,404), so the test is reliable.

D. Discussion of Finding

The aim of this research is to find the research problems the research wants to research. Those are:

 Is there the effect of asynchronous method for students' comprehension in English Syntax at the fifth semester of English Department IAIN Madura?

Based on the data gotten, the finding of this research from statistical analysis present that there is effect of asynchronous method for students' comprehension in English Syntax at the fifth semester of English Department IAIN Madura. It is proved by consulting t_o and t-table that $t_o = 1.72$ then compare with t-value in t-table of 0.404, the researcher stated that null hypothesis is rejected and alternative hypothesis (Ha) is accepted because $t_o >$ t-table (1.72 >0.404). It means that there is effect of asynchronous method for students' comprehension in English Syntax at the fifth semester English Department of IAIN Madura.

 How significance's the effect of asynchronous method the fifth semester students' comprehension in English Syntax at English Department of IAIN Madura.

In this research, there is the effect of asynchronous method for students' comprehension in English syntax. It is proved by consulting t_o and t-table that $t_o = 1.72$ then compare with t-value in t-table of 0.404. The result of analyzing the data presents that t-value is higher than t-table.

To know how strong the significant of effect asynchronous method for students' comprehension, the researcher determined df (Degree of freedom) by formula df = N-2 as the discussed above the number of participants (N=24). So the degree of freedom is calculated 22. Based on df score above, in order to consult to t-value on the level of significance 5%. Obviously, in df = 22, t-value that can be obtained in t-table in the level significance 5% is 0.404. After t_o = 1.72, then compare with t-value in t-table of 1.72, the researcher stated that asynchronous method has strong significance of the effect of asynchronous method for students' comprehension in English syntax.